![线性代数(全国中医药行业高等教育“十四五”规划教材)](https://wfqqreader-1252317822.image.myqcloud.com/cover/959/50489959/b_50489959.jpg)
1.3.2 余子式与代数余子式
一般地,低阶行列式比高阶行列式较易于计算,在把高阶行列式变成低阶行列式时,要把行列式按一行(列)展开,这样要用到代数余子式的概念.
由三阶行列式的对角线法则,得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_48.jpg?sign=1739076256-i5RrDi9NBoBnnEj4xvd34sWGIIvjEP3S-0-8e9e4b74e32121f94494dfebb1365f27)
=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-a11a23a32
=a11(a22a33-a23a32)-a12(a21a33-a23a31)+a13(a21a32-a22a31)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_49.jpg?sign=1739076256-yDUkVLgNs10w7nzAsmvjiVIwZUxEBaT4-0-384d50fedd43c9a7053652e4d66433e4)
(1-13)
在式1-13中,二阶行列式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_50.jpg?sign=1739076256-4WxrBRBaYiIE96ZgSY7Wmg59Vy3eE4ff-0-8cca0e8df78441018f85703c7bceeb1b)
就是在原行列式中将元素a11所在的行与列划去后,剩下的元素按原来的相对位置组成的低一阶的行列式.这样的行列式称为a11的余子式,记为M11.又如,a22,a32的余子式分别为
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_51.jpg?sign=1739076256-iSwD4WH26JCzAsGbUo2aeTTd2mDpspkb-0-72e32be9106cb2ed7eb47776469d0331)
定义1 在n阶行列式中,划去元素aij所在的第i行和第j列后,余下的n-1阶行列式称为元素aij的余子式,记为Mij.元素aij的余子式Mij乘以(-1)i+j后得到的式子,称为aij的代数余子式,记为Aij,即
Aij=(-1)i+jMij
(1-14)
如,在上面的三阶行列式中,第一行元素的代数余子式为
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_52.jpg?sign=1739076256-TgD3UogV5gamT8tmDj81ETHZFXP00h2w-0-2e9ed6faff8a46f1356a6e96e6bfd5d2)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_53.jpg?sign=1739076256-Ql0weEIkMOeYBH69BscVjMFPuPX43S23-0-b6c791b075ea8f741f90527354800a81)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_54.jpg?sign=1739076256-8NpaFqIQshqzL3NeLkJGnosU3ydah72C-0-09ce22ef48f8aaac389c59d4cfa2d51e)
这样,式1-13可以写成第一行元素与相应代数余子式乘积之和,即
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_55.jpg?sign=1739076256-0woVLDGMu3aOXLRABZp6FzaueGRDuyYz-0-1aee9a0eed5e75c17de8acd77ab2f1e5)
一般地,有如下的行列式展开定理.
定理1 n阶行列式等于其任一行(列)所有元素与相应代数余子式的乘积之和,即
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_56.jpg?sign=1739076256-C3TE0VqVqsc9oPax20Ovx9qhN2pUnJoJ-0-c626de9b7fbe743246e3c41541ece55b)
(1-15)
其中,等号上方写(i),表示n阶行列式按第i行展开.
证明 (1)先证最特殊的情况,即第一行只有a11≠0,而其余元素均为零的情况.
由行列式的定义知,每一项都必须含有第一行的一个元素,但第一行只有a11≠0,所以一般项可写成
(-1)τ(1j2j3…jn)a11a2j2…anjn=a11[(-1)τ(j2j3…jn)a2j2…anjn]
上式等号右边括号内的式子正是M11的一般项,所以D=a11M11=a11(-1)1+1M11=a11A11.
(2)再证行列式D中第i行第j列元素aij≠0,其余元素均为零的情况.
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_57.jpg?sign=1739076256-fSZG9n0qGqS6jP0G7XusBcClph6KVx0u-0-a2649c2a56d105c266c71fb5e769725d)
先进行交换,将D中的第i行,经过i-1次交换到第1行;再进行列的交换,经过j-1次交换到第1列,共经过了i+j-2次交换,得行列式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_58.jpg?sign=1739076256-dREY5Jm3jwnQpOmNMXqrEWa1OTqCgvsH-0-db2b8c0d4a4df6fcffd077449e383c6e)
(3)最后证一般情形,可把行列式D写成如下形式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_59.jpg?sign=1739076256-7yM0tzAnzMLwohfX1PfwXRcEl2I5SCiQ-0-c5adaf18205cc1323a2fc17e2b42b797)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_60.jpg?sign=1739076256-1NEx4i5Jbfm8RH6KN2EX8L7lTC60CCMB-0-bf71e8c621a90f033d7073c58bdb988e)
=ai1Ai1+ai2Ai2+…+ainAin
定理得证.
例3 分别按第一行与第二列展开行列式.
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_61.jpg?sign=1739076256-J2NP1TOmIhVtGI2PkQtOwGUnPY7l2EeT-0-c7068c138349161f883ce32942770587)
解 ①按第一行展开,得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_62.jpg?sign=1739076256-EqU5qNtjXo3mOLugH7bMajpfxPU46ehV-0-d8872b50161b65fbee5c3a2a2088b427)
②按第二列展开
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_63.jpg?sign=1739076256-oE8QLx1YgJHFqsGExDPV7eBUR5Q0ZhoS-0-9a2792b337c354f3da5263f9505bfa8a)
定理2 n阶行列式D=det(aij)的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
ai1Aj1+ai2Aj2+…+ainAjn=0 (i≠j)
a1iA1j+a2iA2j+…+aniAnj=0 (i≠j)
(1-16)
证明 将行列式D按第j行展开有
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_64.jpg?sign=1739076256-hxr5sCN5rKqjYuB0UYhTRnPyGNB0wb9t-0-7c7069c53fd9545c3001cbedb07186cf)
把上式中的ajk换成aik(k=1,2,…n),得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_65.jpg?sign=1739076256-6aOrNO4KRMFTaj4nr2KJbCXOWUiAwW0T-0-99d921798670f07ac122688f88c264a5)
上式右端当i≠j时,有两行对应元素相同,其行列式的值为零,所以得
ai1Aj1+ai2Aj2+…+ainAjn=0
同理,将行列式D中第i列的元素换为第j列(i≠j)的对应元素,可证D按列展开的结论.