![系统建模与控制导论](https://wfqqreader-1252317822.image.myqcloud.com/cover/696/50417696/b_50417696.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.1 拉普拉斯变换的性质
接下来,我们回顾拉普拉斯变换的一些可以简化计算的性质。第一个性质是对拉普拉斯变量s的微分。
性质1
设
L{f(t)}=F(s)对于Re{s}>σ
那么
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_07.jpg?sign=1738862285-NYxU19Rcd29lHkENCAhzMkuQ0sQhb7Q1-0-71077eee0255b1ebc12f2d9edb483b2f)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_08.jpg?sign=1738862285-yTlPeEdoR49eXfLiNqJyhdavqIy1L3SB-0-6c5208c7430f04506f1e25f17063cece)
所以
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_09.jpg?sign=1738862285-Ah26FVBs8Sqy5fmZ27q9vYTkrjaoMvpf-0-04f84be055737fb8228aa8b54b669018)
作为这个性质的一个例子,我们展示如何获得任意n的tn/n!的拉普拉斯变换。
例5
在前面的例子中已有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_02.jpg?sign=1738862285-GKstCHEUo4t3V5L3BUh6Zh21bMgrY5Di-0-55663cce3d58f3a9c54ff9f9e75794bd)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_03.jpg?sign=1738862285-HSK5Ok3lXqyrhq0ZydmJ5C7s3jc7Rcop-0-f40b11c1569fd562b46d94f6ad05bc0e)
我们对
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_04.jpg?sign=1738862285-jEx7cllFApGYWRxvqEhdVUSJ2DkEpqiB-0-6c65bbe4d176bbce7b38e8d2f3ba5389)
两边的s进行微分,有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_05.jpg?sign=1738862285-FNilIyKwHvKmwjExaQssdUeTGZ9CqTyH-0-70c021f0f86a4a1eb2b72d1fed9dd6aa)
或者
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_06.jpg?sign=1738862285-coZHMBevVervzEorOUkcZxS4SU7RubaG-0-725dcc30b73ea1f10a4de4fb8f6f7724)
类似地,对于任意的n=0,1,2,…,都有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_07.jpg?sign=1738862285-By4JEu5Lj9zWdGvgc3VlWw6cFWPBZ1ZK-0-43931a0ef6e7bd9cc4e6762ad80ebcfd)
例6
我们在之前的例子中可知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_09.jpg?sign=1738862285-qfSdg7I7yZc2B8NeFBdrJIZg3GwW9jn0-0-6b174ca2764463f241b6353b2b07833f)
根据式(2.8)我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_10.jpg?sign=1738862285-TscfWq8bY7jPWggY3tnNqH9B3FbN4Ymk-0-79493b128dae1620edbd74ac622d284e)
性质2 L{eαtf(t)}=F(s-α)
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_01.jpg?sign=1738862285-xVNDU5FsKh6paj2ReFnIhg4B9wk9pQsL-0-5d2bb16958f1cfcdf26614d1b2f19897)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_02.jpg?sign=1738862285-nLIExlA29FwfaTOYFFb0f2fKosIBoVJl-0-4e693428c005c83a5f852c2a8d77b499)
例7 f(t)=cos(ωt)
已知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_03.jpg?sign=1738862285-JTHUOcR5gtSa0YB7pZPJRe3tU5a7bNb4-0-7856bdbc323d2d20aebe33253e9781d0)
可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_04.jpg?sign=1738862285-d1fT5M0piT6heXyXi1yASMoLbXnkABeT-0-231e9de73a2afa837050dec20576ab48)
性质3
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_06.jpg?sign=1738862285-b8tuZ59syzfg1eDPKvuVFpcFKFzr2PUS-0-d9ffb5625c47b302bb8c28a23003def2)
证明 根据拉普拉斯变换的定义可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_07.jpg?sign=1738862285-bktLu3IqkXv4RLx9whxBZTkiN3vPWRKW-0-c7557365c66be582a9648d37ff42c5c9)
接下来用分部积分法,令
u=e-st,dv=f′(t)dt
并且
du=-se-stdt,v=f(t)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_08.jpg?sign=1738862285-vT69RZF1fp8rAm2nq9zHH4WuCXZKbIm5-0-98be2c03a50c88b90fe4f3b112bec3df)
对于Re{s}>σ,存在f(t)的拉普拉斯变换,使对于Re{s}>σ成立[1]。因此最后一个方程变为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_01.jpg?sign=1738862285-IMR2biQ8vJi38EJqh5BB5QVocUF4ds6n-0-b79293437b5011c0298492490cffc634)
例8 f(t)=cos(ωt)
f(t)=cos(ωt)和它的导数分别为
f(t)=cos(ωt)
f′(t)=-ωsin(ωt)
对于Re{s}>0,f(t)和f′(t)的拉普拉斯变换都存在。于是利用
L{f′(t)}=sL{f(t)}- f(0)
我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_02.jpg?sign=1738862285-Nc4xUMtnMdniFfk8LPNNoWSRzMYe45nn-0-89903e6ebce471d1deae980b5e76fcf3)
或者,经过整理可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_03.jpg?sign=1738862285-wCm9s52z9s8sRiFFYJTWqz7NUBgAASY0-0-ec7e59dc6dbac9dba489bbb9dc0c0659)
例9 解微分方程 考虑一阶微分方程
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_04.jpg?sign=1738862285-9oSSKItaP3fG4V1LKk5YqVJgEr5CaAbD-0-809eea93bfeca53a7906b353816664ab)
其中,输入us是阶跃输入,并且
X(s)≜L{x(t)}
我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_05.jpg?sign=1738862285-Ci1hLOUtr4uRRJyTmDew7MP6Fm9UpFeW-0-d9a81798d30d78b4807c208fb26458e9)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_06.jpg?sign=1738862285-lMnnXrWsFpTpDLd1uwAMp4W5udAbvQMX-0-95724d60431780f97475f4f6bd58068f)
对微分方程两边同时做拉普拉斯变换,可得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_07.jpg?sign=1738862285-1qYwLDxuIh58JznYUw3P51emRSOZhsHy-0-aea396ebf3a198b814dcc0585bb6f991)
继而
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_08.jpg?sign=1738862285-telEWu3s4yYGQSbFq04d71W5257HyS9v-0-5bac233acab94536ebf25555f71ebe80)
将X(s)提到公式左侧,可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_09.jpg?sign=1738862285-cxhPtYO2NOAv3bVAiInzE1Ej2i70sUrW-0-6b8c6440a0029d63a2d50bb07c033f11)
化简得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_10.jpg?sign=1738862285-pDxfgnJv4Nqfwe807GXoIwiJUNni50xg-0-17d773db189264c7eeaaf454bb0a4329)
为了解出x(t),我们需要计算
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_01.jpg?sign=1738862285-v9NIJGomB7AHmQzJ9NJci9v1lzmQW0iX-0-64231d7819f9409aa8b15f901db7088f)
第二个方程后面是部分分式展开,这涉及下一节的内容。