![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.1 直角坐标显式表达举例
以较为一般的泛函为例,其定义在一元函数所在的空间上.函数y=y∗(x)是所要寻求的“极小点”,它是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P33_21408.jpg?sign=1738973035-UqU54dZTEx8BUQAYmlumiHZIeFZ66kYG-0-e5504635e3603b2d9ac2eee5e3c04fbf)
的“极小点”.其中的函数F关于变量有足够的可微性,如连续可微.泛函定义在如下连续可导函数集合上:
DF={y∈C1[a, b],y(a)=A, y(b)=B}
对于任意的函数y(x),泛函值Ly≥Ly∗.这里引入摄动函数
h(x):=y(x)-y∗(x)
满足
h(a)=h(b)=0
在此基础上,看泛函值的变化
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21416.jpg?sign=1738973035-tRdjIJl47eh25eG7lAMWwhndflxJ1cfI-0-b1250bb0923d2ba24eb433e4f4a56f82)
上面最后一个等号用到了分部积分和摄动函数的齐次边界条件h(a)=h(b)=0.
根据极值点,也就是驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21418.jpg?sign=1738973035-QXbKeK7caJwqMvUsVFzLjQADQQIMX7DJ-0-dcbba8ae1ef4cccf5e73441b9b1d9230)
即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21420.jpg?sign=1738973035-axLXg2CYPmMYGftxUH6HlqlKiOKqtADA-0-71d33e71ed542c52471c2f72d4e96733)
再利用定理1.5,同时注意摄动函数h(x)的任意性,可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21422.jpg?sign=1738973035-ch5LsKDORGMXJjfSygBBIj5qReVy0f8p-0-6428726ab02a5feb51f9ae5e65776515)
此即“极小点”y=y∗(x)满足的必要条件,通常称为欧拉-拉格朗日(Euler-Lagrange)方程.
将式(2-15)用于前文的最速下降线问题.
例2.1 最速下降线问题的解(即质点下降的曲线)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21423.jpg?sign=1738973035-o4KxQKYrFKbwDTS9wqeTLMMBEsOr9DUb-0-36a20c74bc9e071731eb1b554e03e222)
解 回顾最速下降线所满足的泛函式(2-4)及其边界条件式(2-5),有
(注意,这里不含变量x)
得到欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21430.jpg?sign=1738973035-UonmL9axr3F4N8ciRhJ4IuWZWypjUEoa-0-bdfab80b4555f1cf7f020a4387e67e64)
具体讨论求解.两边乘以函数导数y′得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21432.jpg?sign=1738973035-wFY0sDnCo1q60oMcTrt5cbcxdSWbIMci-0-0992a6d9ff4165e3e0c236fe33550350)
得到首次积分
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21434.jpg?sign=1738973035-wmAQ2YAUAKw065heUETypWNdtrtPH4V3-0-9eb717c0ec01b4f93efb2a372ef15fcb)
通分之后,令得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21435.jpg?sign=1738973035-rmfhapNnsZQCZTpHsM6riR57UjWjfZRk-0-60195bec571c904136919ca582d8ac1b)
根据微积分知识,可以将导数y′理解成曲线切线的斜率,所以记y′=tanθ,这里的θ就是曲线切线与x轴正向夹角.从式(2-17)得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21437.jpg?sign=1738973035-Ndu3L5P5AzyHCbE2gbVI9FiSFMWxZCfZ-0-04aab0c477594c89fc1ccce1d8d0b2cb)
代入y′=tanθ,就有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21439.jpg?sign=1738973035-3am3PASV8WsDSGyAT94dY9kqRA9BUz9B-0-b500e1c2d5ef9ade1a7a834ac98f9df5)
积分后得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21441.jpg?sign=1738973035-qDHPc7zPC9yy3rwonMBGNzIl8YEGfNUZ-0-2935adc127de9839f56c5e1900250e35)
式中,C2为积分常数.引入变量π-t替换2θ,化简式(2-18)和式(2-19),并结合y(0)=0的边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21443.jpg?sign=1738973035-SHYoWIh19ZgDtOXBifmRsa0pQ2GuVCu9-0-883b742ab467d3125c1cf805c9317a6b)
最后可以通过条件y(X)=Y确定式(2-20),这里略去.或者记r=C/2即可得到式(2-16).式(2-16)或者式(2-20)就是最速下降线满足的曲线方程,如图2-1所示.