![车用同步电机噪声与振动](https://wfqqreader-1252317822.image.myqcloud.com/cover/853/42637853/b_42637853.jpg)
2.2 连续系统的振动
2.2.1 薄板的振动
弹性薄板是二维弹性体,可以承受弯矩。设薄板的中性面在变形前为平面。建立(x,y,z)坐标系,(x,y)坐标面与变形前的中性面重合,z轴垂直向下(见图2.1)。薄板受到沿z轴的分布力f(x,y,t)作用。在中性面上任意点处取长宽分别为dx和dy的矩形微元体。将与x轴和y轴正交的横截面分别记为Sx和Sy,假设弯曲变形后截面仍保持平面。将板的中性面法线视为截面Sx和Sy的交线,则弯曲变形后必保持直线。弯曲变形后,中性面上各点产生沿z轴的挠度w(x,y,t),且引起截面Sx和Sy的偏转。设截面Sx绕y轴的偏角为θx,截面Sy绕x轴的偏角为θy。在小挠度的前提下,偏角θx和θy可用挠度w(x,y,t)对x轴和y轴的变化率代替:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_07.jpg?sign=1739297519-AvLB9G0YNvPhj038XLw1lArolWWukwoB-0-f4dcec44b5a086023952487b9298e2a4)
图2.1 弹性薄板
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_08.jpg?sign=1739297519-JOQGutcfs1YUE2rtW6WMxdXOwPAZ6lfw-0-bd2ddc8708481fbac1298a3558694f5f)
则截面上坐标为z的任意点产生沿x轴的弹性位移u和沿y轴的弹性位移v分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_09.jpg?sign=1739297519-446hOfJXNp3T9wbHvPhr4xCn67LCAmuN-0-2af8a3ac3b19d90f616a2f51c862bd9e)
位移u和v对x轴和y轴的变化率导致微元体沿x轴和y轴的正应变εx和εy:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_01.jpg?sign=1739297519-B2pRP9f7pPg7p5TcleHIC9uCeZyaUDKl-0-77a9d423539b44e1d916ae053389ecf2)
除正应变以外,位移u对y轴的变化率和位移v对x轴的变化率导致微元体在(x,y)平面内的切应变γxy为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_02.jpg?sign=1739297519-iRfkmpY1X5Xq8ZAuZnQjbLGwFoaqz1Zh-0-48a44ee95f77bf7eb6f81513d1e8fbb8)
代入广义胡克定律计算正应力和切应力:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_03.jpg?sign=1739297519-pvhsESb82ZYtZd1PThjRdxC6jKAoGcAp-0-8ec049527451896671c7707de848221a)
σx、σy、τxy在截面Sx和Sy上的积分为零。设、
分别为截面Sx和Sy上沿z轴单位长度的剪力,板的厚度为h,密度为ρ。根据达朗贝尔原理,考虑微元体的惯性力,列出微元体沿z方向的力平衡方程(见图2.2):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_06.jpg?sign=1739297519-NKiQDFHJiOGo1mmH2gj35zRnlIKEL217-0-8ddf851a371c996bfcea9dc6d3697bf2)
计算截面Sx的单位长度上作用的绕y轴的弯矩My和绕x轴的转矩Myx,以及截面Sy的单位长度上作用的绕x轴的弯矩Mx和绕y轴的转矩Mxy,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_07.jpg?sign=1739297519-TkXYHL72eK1lL68h6SDBgxRYAIqfAG1h-0-ffb66f6a725322b3c0666674df732d3a)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_08.jpg?sign=1739297519-8fV9ADrTI9M5Q5PdFiF5WXD24mjmY14w-0-48c5f0e432901021ccd3dc3315d28d10)
图2.2 微元体沿z方向的力平衡
式中,D为板的抗弯刚度:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_09.jpg?sign=1739297519-43ZsMclm5Ebuv9pHbcxyqR22OjVUXVvL-0-fb0ea889599277b3c496968870498b38)
忽略截面转动的惯性力矩,列写微元体绕y轴的力矩平衡条件(见图2.3):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_10.jpg?sign=1739297519-zuctT5kHL6fLT2E2eXuHvV84ZRHNuC7U-0-44664f6704d2d8cb3688d6afdbc77883)
略去dx、dy的三次项,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_11.jpg?sign=1739297519-8l2kVO2GM1ADYEWuhTjpwfc7nVVBqhc2-0-8ca96ecb46b9a349a6f5b15c07ef78c0)
与此类似,从微元体绕x轴的力矩平衡条件导出(见图2.4)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_12.jpg?sign=1739297519-vICk8ny0A2IWMBlOnT5RMIX0W71Y27pr-0-897418c32fe5527601286cf3a86f0bd2)
将式(2-62)、式(2-63)代入式(2-58),得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_13.jpg?sign=1739297519-VC7l8hJA47Y3IXaZDP0aE4hAHZJ051Wq-0-ab56d849d3e629c7956a4a72e80a1b10)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_01.jpg?sign=1739297519-58PJiablKuICzFHSzxLBxiXdjkQMXmlI-0-9eb4a0b680b85efd8d136e543ca0e2c6)
图2.3 微元体绕y轴的力矩平衡
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_02.jpg?sign=1739297519-Tg7fnsuK6xeqRFXxnQzhDbCyvN5uyngx-0-d0ebd37aa8bf06f9e7b1822f885bcd73)
图2.4 微元体绕x轴的力矩平衡
将式(2-59)代入后,利用二重拉普拉斯算子得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_03.jpg?sign=1739297519-e1a6l6eImAc4l2PbcUUWKkn1nrdm6If4-0-67f37cee3225a7516fc3600afe73a60a)
导出薄板的振动方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_04.jpg?sign=1739297519-1eULc7XAijuvBoz0oSaPxC8Xg3NiKNvt-0-200b48a2414b8d6970491abac7646081)
2.2.2 圆环的振动
本节研究的圆环,假定为等截面的而且截面尺寸和环中心线半径相比要小得多,同时截面在振动过程中仍然保持平面。选择圆柱坐标系Rθz,圆环在振动中除了扩张振动之外,还有扭转振动,如图2.5所示。设其绕轴线的转角为ψ,于是截面上各点有三个方向的位移,设其沿R、θ、z方向的位移为u、v、w。现以轴线(截面中心线)上各点的位移为u、v、w,绕轴线的转角为ψ,略去高阶微量,则环上任意点a(R,θ,z)的位移将为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_05.jpg?sign=1739297519-IGD064vhYkYqLqGal9tPZRAjlbJEf6YI-0-b58cfaa7d013848f046f87b566006677)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_06.jpg?sign=1739297519-xsFPQa7P1bQvQHaUlWgavXdNHOCbSwJ7-0-879052d5e87eea702b024968d9a93c06)
图2.5 圆环的振动
根据小变形情况下圆柱坐标系中的柯西方程,截面上各点应变和应力分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_01.jpg?sign=1739297519-uvQQAsFENA5lgISyDUZEkr4hgiNnZcyq-0-09ef35f2eaca203c7fd225cdedfbaf33)
上述关于剪切变形只限于平面假设,因此只能适用于圆截面的圆环,以下只讨论圆截面的圆环。圆环的势能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_02.jpg?sign=1739297519-AfEsYKii57651zZSVvZjphJTWxIVeSgy-0-7195b19311948702cc2ab53314fcd463)
式中,A为圆环截面积;Jz、Jr分别为截面对于通过形心而分别平行于z轴和R轴的轴线的惯性矩;JP为圆截面的极惯性矩。
动能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_03.jpg?sign=1739297519-LTkGTQyBDu0EUFTntBt5pS95m7z5faj6-0-10d558b9d76d7ea148121e285aa1ee60)
式中,、
、
分别为圆环上任意一点a(R,θ,z)在u、v、w三个方向上的速度,且
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_07.jpg?sign=1739297519-FTW9XfOLCFNzSX0zXwoMkYbi41oCxAfX-0-5da0ba7d09f9e71d64ba74b114bf1564)
在动能和势能表达式中可以发现,u、v和w、ψ之间不发生耦合,因此可将圆环振动分解为环面内的振动和环面外的振动。
1.环面内的振动
变分方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_08.jpg?sign=1739297519-Ykx8sBuL6R9tMfEObAKNshd8nskMHLMo-0-ed120ae9877ac8d6dd701756e49893f7)
讨论环面内的振动时,在动能和势能表达式中令w=ψ=0,然后将其代入变分方程式(2-72),经过变分运算,并考虑δu、δv的任意性,略去小量得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_09.jpg?sign=1739297519-iEac5Jv5ylJvovTE9GOGFM2qhHFMYUyx-0-f5a544ffc74e4013aa948abdc3662569)
此方程包括圆环在环面内的伸缩和弯曲振动,由于Jz=Ar2,要使弯曲振动的有关项和伸缩振动的有关项同量级,则由εθ=+
,可得u=-
。根据这个关系,假设
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_13.jpg?sign=1739297519-LHh6cZda4Ni0hq6iC0jhwmgpzHxwoZAg-0-c3bb4e58f016117670c218e653173cbe)
将式(2-74)代入式(2-73),可求得圆环在环平面内弯曲振动频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_01.jpg?sign=1739297519-7E9S5b2vuV4a1TZ9yWeFdte1ZUaUFo6R-0-0b251e36079c96855d254b95b050d2ec)
当n=0时,p0=0,u0=0,v0=B0,是圆环的刚体转动。
当n=1时,p1=0,u=-A1cosθ+B1sinθ,v=A1sinθ+B1cosθ,是圆环的刚体平动。
考虑到Jz=Ar2,将式(2-73)进一步简化,便得到圆环的伸缩振动方程:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_02.jpg?sign=1739297519-CUKXJP51X8Qae8RRakLLdrR8I9JnNico-0-68ca58293f552792b07e4da066539a71)
此时设圆环做波数为n的伸缩振动的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_03.jpg?sign=1739297519-wRgUs5Ki5qmeaUj4IlUUakLx6YiwRZAM-0-df87735daf49c0dd327b30bc435953e2)
将式(2-77)代入式(2-76)可解得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_04.jpg?sign=1739297519-dvMeMMRnmYpBGYvccTs6LJMcQrsqrNb2-0-bb5387b897a05fd0b148b0bd69e7bf72)
当n=0时,圆环切向位移为零,只做均匀的径向振动。
2.圆环的扭转振动和面外弯曲振动
在动能及势能表达式中令u=v=0,然后代入变分方程式(2-72)中,经过变分运算,并考虑δw和δψ,得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_05.jpg?sign=1739297519-bf3NXOnQC7QAWd3ZXvvXSg1OMQ2OIrAk-0-b47206c2a9f98a0862f920a5aef48604)
以上两个方程彼此之间发生耦合,即面内弯曲振动与扭转振动是互相耦合的,现设其振动时的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_06.jpg?sign=1739297519-fDAZQDabZXn5jLT9Wrm4EN5rxjbrTss5-0-54c8d33523ff328165145755eee2731c)
将式(2-80)代入式(2-79),并考虑到Jz=Ar2,得到频率方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_07.jpg?sign=1739297519-Al5e1Bou5mvJkNxlpNP8HKdXPvUkKzBk-0-708435ddc1922f995721d8a09dc8c2e2)
所以有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_08.jpg?sign=1739297519-ZJRFQt8AJzUOGCAmU8GA5v68XEyL9Nic-0-504311cd78ac419e64afc2e668c7de35)
式(2-82)中,由于根号中的后一项比前一项小得多,所以根号取正值或取负值时,频率值的差值较大。频率中较高的一类是常说的扭转振动,低的一类是弯曲振动。对于扭转振动,其频率值为根号取正值,即
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_09.jpg?sign=1739297519-UpuDr1laiRZHlZh2ZSCjoPN8tNrTA83e-0-f4423bae09f5619b1aae81e98c245260)
当n=0时,有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_01.jpg?sign=1739297519-WVr4pC70YJIHukgDVTBdeaigSpvmgcEb-0-ccbcd3180630846e638bb4e86590d198)
相应的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_02.jpg?sign=1739297519-1mH9LoMeid9EkSeVTLGy38nYFk9pfgYR-0-9280966d331447f25678d26febc64b45)
和伸缩振动频率相比,扭转振动的基频低于伸缩振动的基频。
对于弯曲振动,即根号前取负号,可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_03.jpg?sign=1739297519-5FWVjNtCrbweIryVHW8fepIxQp71UyKa-0-64cde822c55ff055ce0a6841bd8f0e79)
式中,ν为泊松系数。
与前面的讨论比较可以看出,面内弯曲振动的频率和面外弯曲振动的频率是相当接近的。
2.2.3 圆柱壳体的振动
对于半径为R、长为L的圆柱壳体(见图2.6),取图中的圆柱坐标系(x,θ,z),其中x、θ、z分别表示轴向、切向和径向,R、h、L分别为圆柱壳体的中面半径、轴向长度和厚度,u、v、w分别为轴向、切向和径向的位移。
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_04.jpg?sign=1739297519-sPWLlFofF7QCKJ833F0d2MPGn84njUcz-0-3f902979a0fb76b050778bcd932eb76a)
图2.6 圆柱壳体的圆柱坐标
若壳体中曲面上的一点P的轴向、切向、法向位移分别为u、v、w,则中面应变与中面位移之间的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_05.jpg?sign=1739297519-MJvtCLNsBXbSrLQEXByZmn9k4ukx41p8-0-61fdfcee4cc30cc83a9f506c8493b7b7)
式中,ε为薄膜应变分量;χ为弯曲应变分量。
内力与圆柱壳中面应变的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_06.jpg?sign=1739297519-VHfkLEanDXoVrkBhFOQLgMoNszzZzfYm-0-be0f33d40d494478ea3ae3605f76c6c7)
式中,N为单位长度薄膜力;M为单位长度力矩。
薄膜刚度K和弯曲刚度D分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_01.jpg?sign=1739297519-VotL1zmzUBaEMS3ctmFTUWJrC0U10HYj-0-a8e47adbf349672bf612d5b6ba334862)
圆柱壳体的一般性内力动平衡方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_02.jpg?sign=1739297519-SWFBHyKOGfwoay4Fb8VNQKSzvlzyVlgv-0-90961e7c2f0b1e1674a63ab53287b580)
式中,剪力表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_03.jpg?sign=1739297519-nAk9iwDCblSxnUuaduh3JBwaCnTugew6-0-9985869254c724d4d07d493c15049444)
将式(2-87)代入式(2-88),再代入式(2-90),即可得剪力以中面位移分量表示的圆柱壳体的基本微分方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_04.jpg?sign=1739297519-Pb5i5BSesIOY58EHrY6pIqWyGFkZeVxb-0-43ce3947b2682cd9857f15584898769f)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_05.jpg?sign=1739297519-yuPPylvO4j1vSzQRiJyRhgcbCECwE8eL-0-3f995b0d5646e9010d61ef629b803814)
在电机的振动噪声分析中常见的是两端简支的有限长圆柱壳体(见图2.7)的振动,即圆柱壳体端部边界各点的法向和切向移动是约束的,转动和轴向移动是自由的。对于两端简支的圆柱壳体,其振型边界条件为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_06.jpg?sign=1739297519-0RKiaE8evJ9nPjIBP9ISnJiRH8Shv7eL-0-7360744f3e1b1570277eeb0ef43607e5)
式中,凡带*者均为响应力学量的振型。
设满足全部边界条件[式(2-94)]的圆柱壳体非轴对称振动的位移振型解为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_07.jpg?sign=1739297519-QAW2KoqgISQ24qfItKt1QlqFJlaKKz9l-0-f97aa859b5102d4c40adf7c3fa76842f)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_08.jpg?sign=1739297519-Pl2DAQm2EdgnyERovLU3nkyjvqwva4IH-0-f5d25788d212306f30926310f3c12b4d)
图2.7 两端简支的圆柱壳体
由于自由振动的圆柱壳体轴向、切向及径向的面压力均为零,即qx=qθ=qz=0,将上述位移振型解代入圆柱壳体的一般性内力动平衡方程,可得如下齐次线性代数方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_01.jpg?sign=1739297519-s95Ulx8tH12qhCSOKvVrv7pdhVONJuow-0-618fec5db1b076767fe0bbabf6ceb880)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_02.jpg?sign=1739297519-HXWyKUNLebEB4AqNQT2JklaI189952pX-0-cf976d531b404a044bc62ac1a106bd39)
为求得振型的非零解,必有式(2-96)的系数行列式为零,展开可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_03.jpg?sign=1739297519-M1YBeOPhyypb3j68TR45oUZsc11GTZcK-0-9d9bb163f41e5cd3a5abb5c8715dc869)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_04.jpg?sign=1739297519-zdR3u1dUgX1a8ujO9JOfb71NesxVpHCF-0-a7ef1687305cf2369e708b3e2269046b)
式(2-98)即为两端简支圆柱壳体的频率方程,求得频率系数Ω2的三个根为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_05.jpg?sign=1739297519-WgBcHjc7cTnytw3LpXjuUHcShBXZOwvu-0-9fad058e611417378c38c1ab70166e38)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_06.jpg?sign=1739297519-7kVftFYUQOiB1KM0Aoe4vpxt49E4xOLj-0-fc6a159381ff096fac314f387e2be55c)
从而解得固有频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_07.jpg?sign=1739297519-5WGI7jfLsDuuVjhN4zszyPragQafotVP-0-b47426b4349d352dfea0e108f2fb1562)
式中,ωi,mn的下标m、n代表响应振型沿轴向有m个半波,沿周向有n个半波。对应一组(m,n),有三个频率(i=1,2,3),代表U、V、W间比值不同,但均有m个轴向半波和n个周向半波。三个频率中最低一个相应于振型中W为主,其他两个频率值要高过一个量级,相应于U、V为主。对应每一个ωi,mn或Ωi,mn,从式(2-96)中可求得一组振型比,例如取c=1,则由前两个方程可解出
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_01.jpg?sign=1739297519-d4kGwuaiGRbYPyrehkIe6RhYGeWA24dv-0-3fa463c12bc1af951f352dda5754c67b)
因此与ωi,mn相应的位移振型为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_02.jpg?sign=1739297519-d6sOtzonO4QRKUyUX9nhRiw7dW2bo3pZ-0-d4f2b6d625f6edc916e3cb147f29ad1f)