![线性代数](https://wfqqreader-1252317822.image.myqcloud.com/cover/441/32164441/b_32164441.jpg)
1.3 克莱姆(Cramer)法则
本章第一节引入了利用二阶和三阶行列式求解二元、三元线性方程组的克莱姆法则.本节将利用n阶行列式的性质,给出求解n个未知量、n个方程的线性方程组的克莱姆法则.
设n个未知量、n个方程的线性方程组为
![42692-00-023-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-02.png?sign=1738985747-eSQTIa0cFEA03lYEZvB9L8uiX9uiD94G-0-0674567eeea6840fac0b0a554d0b789b)
其系数行列式
![42692-00-023-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-03.png?sign=1738985747-Z4TTElH2u8VLVJyt9mIxy5LMJqGH4FxJ-0-988d0f55148587138ce898bbf1107585)
下面讨论方程组(1.3.1)的求解问题.
为消去方程组(1.3.1)中的x2,x3,…,xn解出x1,用D的第一列元素的代数余子式A11,A21,…,An1分别乘以方程组(1.3.1)的第1,第2,…,第n个方程,得
![42692-00-023-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-04.png?sign=1738985747-7G2kIahbQJIiyjwDJiUMBnQ466KjTXM9-0-95401484b869d58e8e9e964ad07212ab)
再将上面n个方程的左右两端分别相加,由式(1.2.5),有
![42692-00-023-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-05.png?sign=1738985747-nr3bqvWvBeCJaS5R0p2l1UEOMpAn7hwm-0-8d3d9ed18c1fbb5d8e96c08134767a62)
即 .
同理可用D的第j(j=2,3,…,n)列元素的代数余子式A1j,A2j,…,Anj依次乘方程(1.3.1)的每一个方程,得
![42692-00-023-07.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-023-07.png?sign=1738985747-FUSY4xODGI06AQU0dYFP6eQl56Wh0ctl-0-41a39e2b8c86794ba8d738fbc3f892c0)
记行列式
![42692-00-024-01.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-01.png?sign=1738985747-z8BpkbzMaBfwgjMZaBA4VBsEiaeYuwvm-0-2724595888c359486aa8a17776fbf4e0)
Dj是把系数行列式D的第j(j=1,2,3,…,n)列换为方程组(1.3.1)的常数列b1,b2,…,bn所得到的行列式.显然,当D≠0时,方程组(1.3.1)有唯一解
![42692-00-024-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-02.png?sign=1738985747-4lhvwh58KyIhXPVoqqplZRcQcZBBmz0J-0-9b17dda6ecad45c79fe3d56af22e9b27)
定理1.3.1(克莱姆(Cramer)法则)含有n个未知量、n个方程的线性方程组(1.3.1),当其系数行列式D≠0时,有且仅有一个解
![42692-00-024-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-03.png?sign=1738985747-faPyIn3km4LpSnjiMBUAaukKcjLfVsi4-0-e410311e8ae59345412c17e309a30583)
其中,Dj是把系数行列式D的第j列换为方程组的常数列b1,b2,…,bn所得到的n阶行列式(j=1,2,3,…,n).
例1.3.1 解线性方程组
![42692-00-024-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-04.png?sign=1738985747-LE5b9HedRMdqd5MtyKmbp3WMB0OyFPOa-0-b9cfea7cfd6475644e5f41b2a6c6383b)
解 方程组的系数行列式
![42692-00-024-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-05.png?sign=1738985747-6K8vt3D4v1SvUdp3tdEMaAKIiq8NveAv-0-21dc409cd6ac2f648c5868a1bc852d1a)
故方程组有唯一解.而
![42692-00-024-06.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-024-06.png?sign=1738985747-YrOiNoCcWcJk8egVdx3NbkaxsGf7wxDN-0-21b8e0de9985f179f29f1c896f266621)
所以方程组的解为
![42692-00-025-01.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-01.png?sign=1738985747-neeetk1eDWpg5Iw2zg4OUlXOrz5XPal0-0-65b784d57e86aa606acc618471864d75)
如果方程组(1.3.1)的常数项全都为零,即
![42692-00-025-02.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-02.png?sign=1738985747-dCnhRhDFOfhqjwnSzSOfZa16NsQQ6ASg-0-87b5dca048740c2ea72522dd99d0b4ff)
方程组(1.3.4)称为齐次线性方程组.而方程组(1.3.1)称为非齐次线性方程组.
方程组(1.3.4)的系数行列式D≠0时,显然,x1=x2=…=xn=0一定是齐次线性方程组的解,并且是唯一的一组零解.因此,若方程组(1.3.4)具有非零解,必须D=0,即有如下定理:
定理1.3.2 含有n个未知量、n个方程的齐次线性方程组(1.3.4)若有非零解,则它的系数行列式D=0.
该定理说明系数行列式D=0是齐次线性方程组(1.3.4)有非零解的必要条件.在第四章中还将证明D=0是齐次线性方程组(1.3.4)有非零解的充分条件.
例1.3.2 问当λ为何值时,齐次线性方程组
![42692-00-025-03.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-03.png?sign=1738985747-EEzqzwp6bFF0VGI5iUvY8Pa0rj5cLQMv-0-3d210a8656931f7cd52779d2da0790d8)
只有零解?
解 方程组的系数行列式
![42692-00-025-04.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-04.png?sign=1738985747-joMA75NSofepAKOFaxBQH40OL5hiJ361-0-eec6145341aab3916905f6f68e25ae84)
当λ≠0,λ≠±1时,方程组只有零解.
克莱姆法则只能在D≠0时应用.D=0的情况将在第四章讨论.
习题1-3
1. 用克莱姆法则求解下列线性方程组.
![42692-00-025-05.png](https://epubservercos.yuewen.com/6F77DC/17404908804237606/epubprivate/OEBPS/Images/42692-00-025-05.png?sign=1738985747-zp9tfEY2KmpKOc1UBX5PxbR5g3yOeRSR-0-84439bbcd4a80c9d0e424bb83df9a760)