![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1739187097-PvSwCDfCRjDWwXVvp4oO4anN3Hg9xeNq-0-262cd403b36cab51003c8fb460a9c188)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1739187097-RkLLIsM1DAgmoKMEFgV8dl4eEEoAr5fF-0-09c6e32f08b21367da6ebdfb8b4b2131)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1739187097-FDufpgyoO1Ho2O4UwEinjuUH6ZRvLnpj-0-d97ae566a888e2c6241ea48b8fb2c45f)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1739187097-370vD2sc89Jhwu86s1VnSYPwSYcpVY7b-0-be4f8284f86d339254db44435da40997)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1739187097-VfmDeNY5G5eGwATacNqJQ4ol1DRVXkFK-0-bbd5c2d0df02a1782bdda984a674651e)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1739187097-kZZVbJynM9k0XhIjKPr6YmbHDPkC0MeB-0-347de1cd6bedb687f85ee4239854b23e)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1739187097-EIBKThsZVIVm2NaU6vBL0z8IJcHOWgsv-0-4ab8816bb584ccab275a6fafe06bd9e7)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1739187097-fmNQJtkmANpJqkOm5fwh0zRPcqkb6P3Y-0-c5acf5dd301656e1ae97841674db6059)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1739187097-P4Rg6kfIbL7qXHPu5cMoteZWCotkCxJV-0-6ea69dfaac8d2035ae14baa1eae20670)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1739187097-aeaClhmNjEQWiFU9Ss4kafv9rLNOLTi4-0-a0d45cdc98ff5cfaaf9f888d57fc2dc7)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1739187097-bWrHh0KpOs8OPlj9UKOtdd1ljwctIrdO-0-f20fb0237a398e55d20c3518614569e3)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1739187097-QddFwuA5ackZ6h4x10tj3QoLDOtTQq3U-0-47becfb6c626813cc3c679399394f8f6)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1739187097-YLe0I7FxtM53FcLVlhqyHzIEtH6ImZAe-0-b0d1ef7a07b5b2c521a98dfc14fbb9a5)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1739187097-0UBjBpIBQJ698Go4YIYtEvYYSMSjvOud-0-7e0d9219d7c6fc44136095c1abf89ea3)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1739187097-qnozKdvaTOw2yesg4NIVDrxtC9ZQOk6z-0-f3cf6c01e2df47ada52df783d60d3a46)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1739187097-h1rUKziOpmUBCA6KLCmlliFdFe4Hr6m1-0-da79d97e1ea2921687737d32ed41b0cf)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1739187097-NXVCFgaoOhvjBLPfLFdvjVTszSSxb8hn-0-1c923236aecd1397f3ff5530dd6dce76)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1739187097-hTWYtAnpE3nY1u2zSYEsuERwaiX5Ve92-0-7cb3af339d306d1f518d26c05d70acdf)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1739187097-BBz8SHvX6MWZfr5C1sZCTZUpck6HTm8R-0-4fbe0f6b0a21d9a94231b55a37562e17)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1739187097-XmVQqCYSkCrLS6k4hXkbyA032tf9HLbD-0-212a2a4fcc4a07a19949893cb6cb541b)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1739187097-pPe9pC553RHtLSQoaW1F5aaKdvQMkFiD-0-f47dcafde88c46889d42b2d89460c5c1)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1739187097-wDm0vk990wSrcQFOZr30B1A8WhFvIwxH-0-960b7dc618b3d3fb3396a6672e8b3314)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1739187097-oeEoFO3KKkJdwjC4FCyq8HZjftkqaWr9-0-f46bd769193b8ba70fee3a657fb4803a)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1739187097-4Ge0hKIwzYz388pRNqN9hmZq00qjRXhP-0-2369e9b89b09dc8de89423aa26d39041)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1739187097-EdkdKNtpsiZ7xbTqXJSvadpcP9Jv2QZk-0-72a94c764e693737001e875f574a074f)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1739187097-bkF2wByQPG2YGO0dGO6T2abf0Zo1NlJS-0-fc1087c29cd93316fc9ec43651222e54)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1739187097-kCfUirf2tqJfrtgMZYeOdvbDJKdxWqan-0-1414faf42c3a9e8c7206bcda445e93e0)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1739187097-ZVYKCioXIIKka6edPJ16ffXDNdvGhWmk-0-805a8988a2e302de9328b4081215b7ae)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1739187097-F47UgnIZbLnzdwHvECYpKxIbEjAw7RHX-0-a90d4472ce54d9851240e3f401d9fc3a)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1739187097-tMCXIyvb77MW15Xr1qjs0baZCVP3MSTA-0-fc8fcca02e21323cb2069d44f84e10ca)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1739187097-X8ZuRMRgRnRFZdGieVQHUd5zb7SSjGqU-0-07f479f7241b19bd4ac44b773b18173f)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1739187097-HGlYWIFSZuN16KeGO0V4KZ6fwEIWm7CI-0-57d8fc10f444a513b0d9985b915ff7a9)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1739187097-wMs9dNoA3e68GUNZx9YDdXFWo2uy1OXt-0-d4230d62ed94d31ae13eede689cc8cdb)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1739187097-bB53419AEA4xFCD8PLO3o9qJ4ibeBv8d-0-f54a5c70d8e6ca136ec23db8bcdf255b)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1739187097-Cv7OItHg0x7CWHxbhFtotjgLcnsaoi3C-0-0a83a7b6595bc2cb24ebb7048f06681a)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1739187097-dtg2kTOr1nZhhIwFJ1Q2yCaLVX58vCPT-0-d8d10378243cf15853cfff744b6482fd)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1739187097-2u4vXtPausiSlL5STc0TGcrVLjYwfwOm-0-79994ed9eb616706d4cc6d6101ed8251)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1739187097-sdzwNprBlYUqbCUjhPA4xAgLkeTAA3e2-0-195b50a045a987e1b1903668c2062cf4)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1739187097-8d9LB7zsaNosSaj2gL2rsNFM4LellxEh-0-305c9e4bc954bf8087f31f0f308fe61c)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1739187097-9iT4emnSHO5WfLHEqhnHR0kUObPaNQNu-0-ad707c05ad880e06b0d73f2ce92463a1)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1739187097-5CD8HnXcXIboR2MHnJXP9Ii9Ztr0J03F-0-3287ace10e4957d5afb39121822cc074)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1739187097-E2RM05mhyTfa3vC8vjD2yaYZA4Kb3Vib-0-f9c3ef720949ebe0d17eb00dc451a926)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1739187097-Tgg3mZM0HW1vZ02FEkV88u9kSLpAAv9f-0-a72f0bf4f2a70b18ad01422ce9d255db)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1739187097-gafYJif4QFTC37CBd4CucXsyyLe9LeUe-0-61349f59ee28e49f99bdf6d30e1f2d6b)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1739187097-ZIO51FOL0yXrUt0mQK4vF4lCZ73g0pch-0-e99eb024633fac4f330443a8471f771a)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1739187097-L2cyLfVU1Q1EVN8Y9OLvgixssYqA6NqV-0-57450723aba396178a332eca8ccacea9)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1739187097-EzJlDGBR2U7mCYmWqKj4nJ5tIUNObNYb-0-4028140c854fb4645919be7d00e283f9)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1739187097-gT86cSrLN4rAAAGrQUvywWwTpRL6jwEA-0-dbabdb2375ea2787656205ac79f94a81)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1739187097-jZ8jKJmGxlvJhSlwyiFlUUl6xM3XG9Mp-0-659426bc7e3ad71acb38a2b1a9ecbe90)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1739187097-15NM9rG124kQPSVVhfoVhU3qvOOJlltG-0-341e01eee2fbeb91a409737cf41abed2)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1739187097-lka3oiX73kXwy4akGgQWzsm3Jv9syoHG-0-a57209755e0427b209fd7dce965c91bb)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1739187097-SRp5vdRc7vVChcAaFgHdhEF1XUvy7mmw-0-8c96f661320d69751b96ef26577b187c)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1739187097-qhBJvj2UO288RaGPGZdkMBI5S6X5VL1W-0-54929b73b646fa6dfbbf62738c768a2e)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1739187097-5SU3X1qIxevutd5Dju85PFbD3xg7UAyO-0-69133b4ee2d4325676ee8c7cd67240df)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1739187097-3q2673mgE71ClQxpXHMMjrPBvZ5jWRmq-0-c24eefc927540a67fc0f87d817d92d42)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1739187097-LBVTI72IBBqm6Jt6yKvKTG6MA6pncUC9-0-4d9de586b98dc448f080ac7af9ff97c5)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1739187097-3UG115I0JJXRiD8BKhAFquWx8Nd2qBIG-0-fb8885783fb510eb8bb8271f7c6f589c)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1739187097-74j7UOhAC5QZcz39u8bwIrwtlLUQcWFY-0-e4c8d21e97679232005cb784acea5e1d)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1739187097-0FuLV3R4AqozsxKUDK2wA86a7suKXLaa-0-614ec008575ccde05297f5bfa58f05a7)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1739187097-Pg1hIbmKDoPBpwe3iXKmhchPO1BPlRFc-0-c9dde39f6c70d80aec13ff235681e5fd)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1739187097-8SR7SiiGu8CYvPwO8qlx3lwh6VcMfyBV-0-b1ab4d4f2519c389766adbc23a1fac4c)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1739187097-g3I7Yuxl5FD1P7h26YlAECDWsLalihO2-0-f1311b8c353d97ace6195ebd08260a04)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1739187097-uNheyDbejmRRRw47I1PtGtO6UmowyoJ6-0-9e030a381422c3db30d609c44bc3c864)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1739187097-wxrIyUt6PUUk5EAVuySALjSAzjldl9sb-0-49104ec19b59d9452bba88c752747ad2)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1739187097-IFQEoS2kWt35UTq3V2WlmiNC7aMYwD8O-0-e4994d21926ae327d45fc0dd87c44feb)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1739187097-HBB653IGfQShsrwu3TstKquKICqQ1WtV-0-fad67d35b71c7c7e73eed410f0ee9955)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1739187097-jlkdbICKeriy3uGYGWSMX8VIUY8BvuKH-0-0e04bd158b94ec70fcf5ffda88a2fbad)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1739187097-hY2Ej8PiEVxf6wv9TiQpMkVTnW71gwor-0-c8aeb050bb87ba533cb99c8c21e9e92c)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1739187097-peGnLozDTIxiqpt3CsSARJNfOXLTplT0-0-9947b79c960c2502354d11f17375a741)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1739187097-GfEkj6TgS2nQDCkn0xUSW7RFt0OTwExm-0-97f52e455f8f2b9908bb215c0ea322fb)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1739187097-qEGoH8eCokP8XHmm7HaGrvk32GhMiNl2-0-7043a3ad9da9ee14ef45798e8791d370)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1739187097-D9saR1uWD5BjgebKLy5mW1uY7T9W1epH-0-cd1221bf5cb5da6fddc4c9e6e0864d2d)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1739187097-6Uoron0VAUFK6M7r0rXaeopQPIRoCgnD-0-34ca4004113a5c2a860115589e5e46e0)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1739187097-IEoh1LsAh7SLs04FJtYLJjeWlZiiTxHP-0-b90fd9bb2d858f941a16614aee011502)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1739187097-zZLiJYZZLuVOb2Bw8aeP0obOYLmVw4nP-0-c0501c9e77d95d5eb13ed5f485f43ed2)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1739187097-e3NIrXtdAS9AuqfIuGGvOLg9t9prXEaL-0-76759963638ab0523da8cb2b796b1743)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1739187097-F4Qct7d0DlnpRSYbhDm5HLoN7LXr6RwS-0-abbd5156bfcdc1f3afdb339f2aade676)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.