1.1 基础数据结构:数组
数组是计算机科学中最基本的数据结构之一。如果你用过数组,那么应该知道它就是一个含有数据的列表。它有多种用途,适用于各种场景,下面就举个简单的例子。
一个允许用户创建和使用购物清单的食杂店应用软件,其源代码可能会包含以下的片段。
array=["apples", "bananas", "cucumbers", "dates", "elderberries"]
这就是一个数组,它刚好包含5个字符串,每个代表我会从超市买的食物。
此外,我们会用一些名为索引的数字来标识每项数据在数组中的位置。
在大多数的编程语言中,索引是从0算起的,因此在这个例子中,"apples"的索引为0,"elderberries"的索引为4,如下所示。
若想了解某个数据结构(例如数组)的性能,得分析程序怎样操作这一数据结构。
一般数据结构都有以下4种操作(或者说用法)。
❏ 读取:查看数据结构中某一位置上的数据。对于数组来说,这意味着查看某个索引所指的数据值。例如,查看索引2上有什么食品,就是一种读取。
❏ 查找:从数据结构中找出某个数据值的所在。对于数组来说,这意味着检查其是否包含某个值,如果包含,那么还得给出其索引。例如,检查"dates"是否存在于食品清单之中,给出其对应的索引,就是一种查找。
❏ 插入:给数据结构增加一个数据值。对于数组来说,这意味着多加一个格子并填入一个值。例如,往购物清单中多加一项"figs",就是一种插入。
❏ 删除:从数据结构中移走一个数据值。对于数组来说,这意味着把数组中的某个数据项移走。例如,把购物清单中的"bananas"移走,就是一种删除。
本章我们将会研究这些操作在数组上的运行速度。
同时,我们也将学到本书的第一个重要理论:操作的速度,并不按时间计算,而是按步数计算。
为什么呢?
因为,你不可能很绝对地说,某项操作要花5秒。它在某台机器上要跑5秒,但换到一台旧一点的机器,可能就要多于5秒,而换到一台未来的超级计算机,运行时间又将显著缩短。所以,受硬件影响的计时方法,非常不可靠。
然而,若按步数来算,则确切得多。如果A操作要5步,B操作要500步,那么我们可以很肯定地说,无论是在什么样的硬件上对比,A都快过B。因此,衡量步数是分析速度的关键。
此外,操作的速度,也常被称为时间复杂度。在本书中,我们会提到速度、时间复杂度、效率、性能,但它们其实指的都是步数。
事不宜迟,我们现在就来探索上述4种操作方式在数组上要花多少步。
1.1.1 读取
首先看看读取,即查看数组中某个索引所指的数据值。
这只要一步就够了,因为计算机本身就有跳到任一索引位置的能力。在["apples","bananas", "cucumbers", "dates", "elderberries"]的例子中,如果要查看索引2的值,那么计算机就会直接跳到索引2,并告诉你那里有"cucumbers"。
计算机为什么能一步到位呢?原因如下。
计算机的内存可以被看成一堆格子。下图是一片网格,其中有些格子有数据,有些则是空白。
当程序声明一个数组时,它会先划分出一些连续的空格子以备使用。换句话说,如果你想创建一个包含5个元素的数组,计算机就会找出5个排成一行的空格子,将其当成数组。
内存中的每个格子都有各自的地址,就像街道地址,例如大街123号。不过内存地址就只用一个普通的数字来表示。而且,每个格子的内存地址都比前一个大1,如下图所示。
购物清单数组的索引和内存地址,如下图所示。
计算机之所以在读取数组中某个索引所指的值时,能直接跳到那个位置上,是因为它具备以下条件。
(1) 计算机可以一步就跳到任意一个内存地址上。(就好比,要是你知道大街123号在哪儿,那么就可以直奔过去。)
(2) 数组本身会记有第一个格子的内存地址,因此,计算机知道这个数组的开头在哪里。
(3) 数组的索引从0算起。
回到刚才的例子,当我们叫计算机读取索引3的值时,它会做以下演算。
(1) 该数组的索引从0算起,其开头的内存地址为1010。
(2) 索引3在索引0后的第3个格子上。
(3) 于是索引3的内存地址为1013,因为1010 + 3=1013。
当计算机一步跳到1013时,我们就能获取到"dates"这个值了。
所以,数组的读取是一种非常高效的操作,因为它只要一步就好。一步自然也是最快的速度。这种一步读取任意索引的能力,也是数组好用的原因之一。
如果我们问的不是“索引3有什么值”,而是“"dates"在不在数组里”,那么这就需要进行查找操作了。下面我们就来看看。
1.1.2 查找
如前所述,对于数组来说,查找就是检查它是否包含某个值,如果包含,还得给出其索引。那么,我们就试试在数组中查找"dates"要用多少步。
对于我们人来说,可以一眼就看到这个购物清单上的"dates",并数出它的索引为3。但是,计算机并没有眼睛,它只能一步一步地检查整个数组。
想要查找数组中是否存在某个值,计算机会先从索引0开始,检查其值,如果不匹配,则继续下一个索引,以此类推,直至找到为止。
我们用以下图来演示计算机如何从购物清单中查找"dates"。
首先,计算机检查索引0。
因为索引0的值是"apples",并非我们所要的"dates",所以计算机跳到下一个索引上。
索引1也不是"dates",于是计算机再跳到索引2。
但索引2的值仍不匹配,计算机只好再跳到下一格。
啊,真是千辛万苦,我们找到"dates"了,它就在索引3那里。自此,计算机不用再往后跳了,因为结果已经得到。
在这个例子中,因为我们检查了4个格子才找到想要的值,所以这次操作总计是4步。
这种逐个格子去检查的做法,就是最基本的查找方法——线性查找。第2章我们还会学习另一种查找方法。
但在那之前,我们再思考一下,在数组上进行线性查找最多要多少步呢?
如果我们要找的值刚好在数组的最后一个格子里(如本例的elderberries),那么计算机从头到尾检查每个格子,会在最后才找到。同样,如果我们要找的值并不存在于数组中,那么计算机也还是得查遍每个格子,才能确定这个值不在数组中。
于是,一个5格的数组,其线性查找的步数最大值是5,而对于一个500格的数组,则是500。
以此类推,一个N格的数组,其线性查找的最多步数是N(N可以是任何自然数)。
可见,无论是多长的数组,查找都比读取要慢,因为读取永远都只需要一步,而查找却可能需要多步。
接下来,我们再研究一下插入,准确地说,是插入一个新值到数组之中。
1.1.3 插入
往数组里插入一个新元素的速度,取决于你想把它插入到哪个位置上。
假设我们想要在购物清单的末尾插入"figs"。那么只需一步。因为之前说过了,计算机知道数组开头的内存地址,也知道数组包含多少个元素,所以可以算出要插入的内存地址,然后一步跳到那里插入就行了。图示如下。
但在数组开头或中间插入,就另当别论了。这种情况下,我们需要移动其他元素以腾出空间,于是得花费额外的步数。
例如往索引2处插入"figs",如下所示。
为了达到目的,我们必须先把"cucumbers"、"dates"和"elderberries"往右移,以便空出索引2。而这也不是一步就能移好,因为我们首先要将"elderberries"右移一格,以空出位置给"dates",然后再将"dates"右移,以空出位置给"cucumbers",下面来演示这个过程。
第1步:"elderberries"右移。
第2步:"date"右移。
第3步:"cucembers"右移。
第4步:至此,可以在索引2处插入"figs"了。
如上所示,整个过程有4步,开始3步都是在移动数据,剩下1步才是真正的插入数据。
最低效(花费最多步数)的插入是插入在数组开头。因为这时候需要把数组所有的元素都往右移。
于是,一个含有N个元素的数组,其插入数据的最坏情况会花费N + 1步。即插入在数组开头,导致N次移动,加上一次插入。
最后要说的“删除”,则相当于插入的反向操作。
1.1.4 删除
数组的删除就是消掉其某个索引上的数据。
我们找回最开始的那个数组,删除索引2上的值,即"cucumbers"。
第1步:删除"cucumbers"。
虽然删除"cucumbers"好像一步就搞定了,但这带来了新的问题:数组中间空出了一个格子。因为数组中间是不应该有空格的,所以,我们得把"dates"和"elderberries"往左移。
第2步:将"dates"左移。
第3步:将"elderberries"左移。
结果,整个删除操作花了3步。其中第1步是真正的删除,剩下的2步是移数据去填空格。
所以,删除本身只需要1步,但接下来需要额外的步骤将数据左移以填补删除所带来的空隙。
跟插入一样,删除的最坏情况就是删掉数组的第一个元素。因为数组不允许空元素,当索引0空出,那么剩下的所有元素都要往左移去填空。
对于含有5个元素的数组,删除第一个元素需要1步,左移剩余的元素需要4步。而对于500个元素的数组,删除第一个元素需要1步,左移剩余的元素需要499步。可以推出,对于含有N个元素的数组,删除操作最多需要N步。
既然学会了如何分析数据结构的时间复杂度,那就可以开始探索各种数据结构的性能差异了。了解这些非常重要,因为数据结构的性能差异会直接造成程序的性能差异。
下一个要介绍的数据结构是集合,它跟数组似乎很像,甚至让人以为就是同一种东西。然而,我们将会看到它跟数组在性能上是有区别的。