会员
深度学习全书:公式+推导+代码+TensorFlow全程案例
陈昭明更新时间:2023-08-31 20:39:18
最新章节:15-13 总结开会员,本书免费读 >
《深度学习全书——公式+推导+代码+TensorFlow全程案例》共有15章,分为5部分,第一篇说明深度学习的概念,包括数理基础,特点是结合编程解题,加深读者印象,第二篇说明TensorFlow的学习地图,从张量、自动微分、梯度下降乃至神经层的实践,逐步解构神经网络,第三篇介绍CNN算法、影像应用、转移学习等,第四篇则进入自然语言处理及语音识别的领域,介绍RNN/BERT/Transformer算法、相关应用等,最后,介绍了强化学习的基础知识,包括马尔可夫决策过程、动态规划、蒙特卡洛、QLearning算法,当然,还有相关案例实践。
品牌:清华大学
上架时间:2022-09-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
陈昭明
主页
同类热门书
最新上架
- 会员
自适应和反应式机器人控制:动态系统法
本书主要介绍如何通过动态系统学习控制律,从而使机器人具备实时反应能力。本书首先介绍机器人学习数据的收集方法,然后重点讲解使用动态系统学习控制律的核心技术,使用动态系统进行轨迹规划的方法,以及使用动态系统进行柔性控制和力控制的方法。本书提供大量应用示例,包括机械臂、拟人手和仿人机器人的全身控制等。本书要求读者熟悉关于机器人控制的基础知识,并熟悉机器学习、统计、优化以及动态系统等相关内容,适合作为高等计算机20.3万字 - 会员
合成生物学智能化设计与应用
本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字 空间计算:人工智能驱动的新商业革命
空间计算是一种不断发展的以三维世界为中心的计算形式和交互形式,是以计算机视觉为基础的高阶应用。其核心是使用AI、计算机视觉和扩展现实将虚拟体验融入物理世界,让用户摆脱屏幕的束缚,自然地与数字世界中的对象互动,就像与真实世界中的对象互动一样。随着生成式AI的爆发,空间计算平台将拥有更加丰富的内容,将在很大程度上改变我们的生活和工作,重新定义商业模式,并改变我们与技术和整个世界互动的方式,推动我们进入计算机12.1万字- 会员
AIGC:让生成式AI成为自己的外脑
《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。全书共分为九章。第一章介绍AIGC技术的基本概念和发展历程;第二、三章介绍AIGC的基础技术栈和拓展技术栈;第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景;第六章列举了目前较为热门的AIGC技术应用;第七章描述了AIGC的上、中、下游产业链及未来前景计算机12.8万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字 - 会员
GPT图解:大模型是怎样构建的
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字